Human sodium channel myotonia: slowed channel inactivation due to substitutions for a glycine within the III-IV linker.

نویسندگان

  • H Lerche
  • R Heine
  • U Pika
  • A L George
  • N Mitrovic
  • M Browatzki
  • T Weiss
  • M Rivet-Bastide
  • C Franke
  • M Lomonaco
چکیده

1. Three families with a form of myotonia (muscle stiffness due to membrane hyperexcitability) clinically distinct from previously classified myotonias were examined. The severity of the disease greatly differed among the families. 2. Three dominant point mutations were discovered at the same nucleotide position of the SCN4A gene encoding the adult skeletal muscle Na+ channel alpha-subunit. They predict the substitution of either glutamic acid, valine or alanine for glycine1306, a highly conserved residue within the supposed inactivation gate. Additional SCN4A mutations were excluded. 3. Electrophysiological studies were performed on biopsied muscle specimens obtained for each mutation. Patch clamp recordings on sarcolemmal blebs revealed an increase in the time constant of fast Na+ channel inactivation, tau h, and in late channel openings as compared to normal controls. tau h was increased from 1.2 to 1.6-2.1 ms and the average late currents from 0.4 to 1-6% of the peak early current. 4. Intracellular recordings on resealed fibre segments revealed an abnormal tetrodotoxin-sensitive steady-state inward current, and repetitive action potentials. Since K+ and Cl- conductances were normal, only the increase in the number of non-inactivating Na+ channels has to be responsible for the membrane hyperexcitability. 5. Length, ramification and charge of the side-chains of the substitutions correlated well with the Na+ channel dysfunction and the severity of myotonia, with alanine as the most benign and glutamic acid as the substitution with a major steric effect. 6. Our electrophysiological and molecular genetic studies strongly suggest that these Na+ channel mutations cause myotonia. The naturally occurring mutants allowed us to gain further insight into the mechanism of Na+ channel inactivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation defects caused by myotonia-associated mutations in the sodium channel III-IV linker

Missense mutations in the skeletal muscle Na+ channel alpha subunit occur in several heritable forms of myotonia and periodic paralysis. Distinct phenotypes arise from mutations at two sites within the III-IV cytoplasmic loop: myotonia without weakness due to substitutions at glycine 1306, and myotonia plus weakness caused by a mutation at threonine 1313. Heterologous expression in HEK cells sh...

متن کامل

Mutation analysis in exons 22 and 24 of SCN4A gene in Iranian patients with non-dystrophic myotonia.

BACKGROUND Non-dystrophic myotonias are a heterogeneous set of skeletal, muscular channelopathies, which have been associated with point mutations within sodium channel α-subunit (SCN4A) gene. Because exons 22 and 24 of SCN4A gene are recognized as hot spots for this disease, the purpose of the study is to identify mutation in exons 22 and 24 of SCN4A gene in Iranian non-dystrophic myotonias pa...

متن کامل

Role in fast inactivation of conserved amino acids in the IV/S4-S5 loop of the human muscle Na+ channel.

Since it has been shown that point mutations in the S4-S5 loop of the Shaker K+ channel may disrupt fast inactivation, we investigated the role of three conserved amino acids in IV/S4-S5 of the adult human muscle Na+ channel (L1471, S1478, L1482). In contrast to the K+ channel mutations, the analogous substitutions in the Na+ channel (S1478A/C, L1482A) did not substantially affect fast inactiva...

متن کامل

The dominant cold-sensitive Out-cold mutants of Drosophila melanogaster have novel missense mutations in the voltage-gated sodium channel gene paralytic.

Here we report the molecular characterization of Out-cold (Ocd) mutants of Drosophila melanogaster, which produce a dominant, X-linked, cold-sensitive paralytic phenotype. From its initial 1.5-Mb cytological location within 13F1-16A2, P-element and SNP mapping reduced the Ocd critical region to <100 kb and to six candidate genes: hangover, CG9947, CG4420, eIF2a, Rbp2, and paralytic (para). Comp...

متن کامل

Functional characterization and cold sensitivity of T1313A, a new mutation of the skeletal muscle sodium channel causing paramyotonia congenita in humans.

Paramyotonia congenita (PC) is a dominantly inherited skeletal muscle disorder caused by missense mutations in the SCN4A gene encoding the pore-forming alpha subunit (hSkM1) of the skeletal muscle Na+ channel. Muscle stiffness is the predominant clinical symptom. It is usually induced by exposure to cold and is aggravated by exercise. The most prevalent PC mutations occur at T1313 on DIII-DIV l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 470  شماره 

صفحات  -

تاریخ انتشار 1993